
Rise of Containers
and Serverless:
Past, Present,

Future
Aleksander Slominski

WoC 2019 : The Fifth International Workshop on Container
Technologies and Container Clouds

Why containers and serverless matter for future?

● All marketing, there are
servers in serverless after
all!!???

“The serverless market is expected
to reach $7.7B by 2021, up from
$1.9B in 2016.

Public Cloud
The worldwide public cloud services market is projected to grow 17.3 percent in
2019 to total $206.2 billion, up from $175.8 billion in 2018, according to Gartner,
Inc.

“At this point, cloud adoption is mainstream,” said Sid Nag, research vice
president at Gartner. “The expectations of the outcomes associated with cloud
investments therefore are also higher. Adoption of next-generation solutions are
almost always ‘cloud-enhanced’ solutions, meaning they build on the strengths of
a cloud platform to deliver digital business capabilities.”

Past

Docker Released in 2013

Containers Timeline

Why containers?
A

https://en.wikipedia.org/wiki/Container_ship
https://en.wikipedia.org/wiki/Intermodal_container

https://en.wikipedia.org/wiki/Container_ship
https://en.wikipedia.org/wiki/Intermodal_container

(Short) History of shipping containers - success story

“In the early 1950’s McLean began his own “container concept”

Matson, on the West coast of the US also attempted a type of container concept, but
failed sorely.

In the late 1960’s Sea-Land got some large boosts from the US Government and US
Military.

McLean and Sea-Land were able to finally standardize the container concept in
the early 70's.
“The History Of ISO Shipping Containers From Wooden Crates To Steel Boxes”
http://www.isbu-association.org/history-of-shipping-containers.htm

http://www.isbu-association.org/history-of-shipping-containers.htm

(Short) History of shipping containers - success story

For the first few years, from 1956 to 1965 virtually all use of the shipping
containers were only by McLean on his own ships.

We must remember, the ISO shipping container as we know it today was developed
in 1956, but was not re-designed and standardized Internationally until in 1972.

The standardization process which began by the ISO and IMO in 1967, was only
pushed-forward at the urging of the US Government for their use by the US
military for transport and housing overseas.

“The History Of ISO Shipping Containers From Wooden Crates To Steel Boxes”
http://www.isbu-association.org/history-of-shipping-containers.htm

http://www.isbu-association.org/history-of-shipping-containers.htm

Containers solved everything?

Gartner
Hype Curve
2017

Serverless PaaS
2-5 years

Gartner Top 10 Trends Impacting Infrastructure

#1 “Serverless Computing

Serverless computing is an emerging software architecture pattern that promises to eliminate the need for infrastructure provisioning
and management. I&O leaders need to adopt an application-centric approach to serverless computing, managing APIs and SLAs,

rather than physical infrastructures. “The phrase ‘serverless’ is somewhat of a misnomer,” noted Mr. Winser. “The truth
is that servers still exist, but the service provider is responsible for all the underlying
resources involved in provisioning and scaling a runtime environment, resulting in appealing agility.”

Serverless does not replace containers or virtual machines, so it’s critical to learn how best and where to use the technology.
“Developing support and management capabilities within I&O teams must be a focus as more than 20 percent of global enterprises

will have deployed serverless computing technologies by 2020, which is an increase from less than 5 percent
today,” added Mr. Winser.

#2 Artificial Intelligence

...

Quick Demo: How do you use serverless FaaS?

FaaS (Function as a Service):

Create function

Invoke function

Profit

Quick Demo with IBM Cloud Functions
$ cat hellowosc5.js
function main() {
 return {payload: 'Hello WoC'};
}

$ ibmcloud fn action create hellowoc hellowoc.js --kind
nodejs:10
ok: created action hellowosc5

$ ibmcloud fn action invoke --result hellowoc
{
 "payload": "Hello WoC"
}

Why functions?

What happened during demo?
Where is server “hiding” in serverless?

What happens when invoking cloud function?
$ ibmcloud fn action --verbose invoke --result hellowoc
REQUEST: [POST]
https://us-east.functions.cloud.ibm.com/api/v1/name
spaces/_/actions/hellowoc?blocking=true&result=tru
e
Req Headers {
"Authorization": ["Bearer eyJraWQiOiIyMD...zA"],
"Content-Type": ["application/json],
"User-Agent": ["CloudFunctions-Plugin/1.0
(2019-11-12T22:04:48+00:00) darwin amd64"],
"X-Namespace-Id": [
"5a82404d-cd75-4cd9-8749-14c4d0d46435"]
}

Req Body
{}

RESPONSE:Got response with code 200
Resp Headers {
 "Access-Control-Allow-Headers": [
 "Authorization, Origin, X-Requested-With,
Content-Type, Accept, User-Agent"],
 "Content-Length": ["23"],
 "Content-Type": ["application/json"],
 "Date": ["Tue, 10 Dec 2019 01:37:29 GMT"],
"X-Openwhisk-Activation-Id": [
"52ea116e6b3c4805aa116e6b3cd80585"],
 "X-Request-Id": [
"deb5f8c60fbd0268ab07f7126f61c707"]}

Response body size is 23 bytes
Response body received:
{"payload":"Hello WoC"}

What happened in demo?

Apache OpenWhisk is used by IBM Cloud
Functions

OpenWhisk is Open Source!

When there is first invocation the user code is
injected into a container and then executed.

Container created

User code loaded
into container

User code is
executed inside the
container

Result is captured
and send back

Container
Terminated

Request received

End

Optimization: stem containers

Keep a set of generic “stem” containers ready

They are ready to run code using popular
runtimes with typical libraries for example
nodejs

ibmcloud fn action create hellowoc
hellowoc.js --kind nodejs:10

Container created

User code loaded
into stem container

User code is
executed inside the
container

Result is captured
and send back

Container
Terminated

Request received

End

Optimization: warm containers

Do not terminate container

Wait for some time to see if the same code is
to be executed again

Re-use (“warm”) container

Container created

Look for existing container and if not found then
user code loaded into stem container

User code is
executed inside the
container

Result is captured
and send back

Container
Terminated

Request received

End

Serverless Timeline
2014-11 AWS Lambda

2015-05 JAWS aka Serverless Framework

2016-02 IBM OpenWhisk, Google Cloud Functions

2016-03 Azure Functions

2017-02 Apache OpenWhisk

2017-05 Kubeless

2017-07 OpenFaas

2018-07 Knative

2019-04 Google Cloud Run
serverless.com

Why Serverless (FaaS)?

What developers want to do?

Write code that matters (direct business value)

Avoid undifferentiated heavy lifting

(leave it to experts to manage operations)

Serverless and Function-as-a-Service (FaaS)
Distinction between serverless computing and providing functions as a unit of
computation (or container)?

CNCF (Cloud Native Computing Foundation) Serverless Definition

“Serverless computing refers to the concept of building and running applications that do not require server management. It describes a

finer-grained deployment model where applications, bundled as one or more functions, are
uploaded to a platform and then executed, scaled, and billed in response to the exact demand needed at the moment.

Serverless computing does not mean that we no longer use servers to host and run code; nor does it mean that operations

engineers are no longer required. Rather, it refers to the idea that consumers of serverless
computing no longer need to spend time and resources on server
provisioning, maintenance, updates, scaling, and capacity planning. Instead, all of these tasks and capabilities are
handled by a serverless platform and are completely abstracted away from the developers and IT/operations teams. As a result,
developers focus on writing their applications’ business logic. Operations engineers are able to elevate their focus to more business
critical tasks

Other definitions

“Serverless is eating the stack and people are freaking out
— as they should be” by Forrest Brazeal

“The way I describe it is: functions as a service are cloud glue. So if I’m building a model airplane, well, the
glue is a necessary part of that process, but it’s not the important part. Nobody looks at your model airplane and says: “Wow, that’s

amazing glue you have there.” It’s all about how you craft something that works with all
these parts together, and FaaS enables that.workload constraints.

Other definitions

What is Serverless? The “2020” edition by Paul Johnston

“I wanted to limit my exposure to managing servers as much as possible.

Notice that I’m not worried about managing servers. It’s my exposure to the
risk that matters here.

I literally didn’t want to have to think about ssh-ing into any instances, and upgrading
them regularly, monitoring them for hack attempts, maintaining any libraries on a
long running system etc. unless I had no other choice due to workload constraints.”

Amazon AWS Definition of Serverless
“Serverless is the native architecture of the cloud that enables you to shift more of your operational
responsibilities to AWS, ...

* No server management - There is no need to provision or maintain any servers. There is no
software or runtime to install, maintain, or administer.

* Flexible scaling - Your application can be scaled automatically or by adjusting its capacity through
toggling the units of consumption (e.g. throughput, memory) rather than units of individual servers.

* Pay for value - Pay for consistent throughput or execution duration rather than by server
unit.

* Automated high availability - Serverless provides built-in availability and fault tolerance. You don't
need to architect for these capabilities since the services running the application provide them by
default.”

Definition of Serverless?
Let create the best definition for serverless?

https://xkcd.com/927/

https://xkcd.com/927/

Our definition - YASD (Yet Another Serverless Definition)

“Serverless computing is a platform that hides server usage
from developers and runs code on-demand, automatically
scaled, and billed only for the time the code is running.”

“Function-as-a-Service is a serverless computing platform
where the unit of computation is a function that is
executed in response to triggers such as events or HTTP
requests.”

Communications of the ACM,
December 2019

Challenges and Limitations
Lack of standards and vendor lock-in

Programming models and tooling

Going beyond stateless short-lived FaaS: statefulness, composability,
observability, ...

Future: containers + serverless?

Knative: serverless and containers and Kubernetes?

“Knative (pronounced
kay-nay-tiv) extends
Kubernetes to provide a
set of middleware
components that are
essential to build modern,
source-centric, and
container-based
applications that can run
anywhere: on premises,
in the cloud, or even in a
third-party data center.”
https://knative.dev/docs/

https://knative.dev/docs/

Serverless developer experience with containers?

“Knative Serving builds on Kubernetes and Istio to
support deploying and serving of serverless
applications and functions. Serving is easy to get
started with and scales to support advanced
scenarios.

The Knative Serving project provides middleware
primitives that enable:

● Rapid deployment of serverless containers
● Automatic scaling up and down to zero
● Routing and network programming for Istio

components
● Point-in-time snapshots of deployed code and

configurations”
https://knative.dev/docs/serving/

https://knative.dev/docs/serving/

Future of computing

Evolution of computation

Year Computing Paradigm Expenses Time to solution Cost of compute with
1 GB of memory per
hour

1960-
2000

Mainframes, data centers Upfront capital investment Months to Years $100K to $1000

2000s HPC Cluster and Grid
Computing, data centers, VMs

Capital investment, reusing
idle machines

Days to Weeks $10-50

2010s Cloud and Serverless
Computing, VMs and
Containers

Pay-as-you-go, sometimes
paying even if not using
compute resources (VMs)

Minutes to Hours $0.01 - 0.06

Future Standardized containers? Pay only for what is used Seconds to Minutes <$0.01

“Comparing Cloud Instance Pricing: AWS vs Azure vs Google vs IBM”, November 18, 2017,
https://www.rightscale.com/blog/cloud-cost-analysis/comparing-cloud-instance-pricing-aws-vs-azure-vs-google-vs-ibm

https://www.rightscale.com/blog/cloud-cost-analysis/comparing-cloud-instance-pricing-aws-vs-azure-vs-google-vs-ibm

Universal Standardized Computing Container like
Electricity?

Standardized
Containers

Cloud
IoT

Future

Business
Application

CompositionsOrchestration

Who builds and operates electric power plants?

Around the world, there are about 62,500 power plants operating today.
https://www.washingtonpost.com/news/wonk/wp/2012/12/08/all-of-the-worlds-pow
er-plants-in-one-handy-map/?noredirect=on&utm_term=.af263d4f8a01

“In 2017, it was estimated that the number of data centers globally had fallen to
8.4 million.”
Predicted 7.2M in 2021 (about 500 “hyperscale” datacenters)
https://www.statista.com/statistics/500458/worldwide-datacenter-and-it-sites/

https://www.washingtonpost.com/news/wonk/wp/2012/12/08/all-of-the-worlds-power-plants-in-one-handy-map/?noredirect=on&utm_term=.af263d4f8a01
https://www.washingtonpost.com/news/wonk/wp/2012/12/08/all-of-the-worlds-power-plants-in-one-handy-map/?noredirect=on&utm_term=.af263d4f8a01
https://www.statista.com/statistics/500458/worldwide-datacenter-and-it-sites/

Inevitability of progress

“People are mistaken when they think that technology just
automatically improves. It does not automatically improve. It
only improves if a lot of people work very hard to make it
better and I actually, I think, by itself, degrade, actually. You
look at ancient civilizations like ancient Egypt and they were
able to make the pyramids and they forgot how to do that. And
the Romans, they built these incredible aqueducts, they forgot
how to do it.

- Elon Musk

Today’s Computing becomes “Legacy” Computing in
Future?
Legacy computing may be containerized, perhaps as virtual
machines (VMs) inside containers, as from an economical point of
view, it may be cheaper to keep legacy code running than pay
for developers to re-design and re-write code using new
computing approaches.

My predictions (may or may not become true …)
In the future computing works like an electric utility?

Pay-as-you-go only way to go for computation?

Like electricity today, it is just there, and we no longer think about it unless it is not
working?

What will we call this future computing infrastructure?

Computing Fabric? Computing utility?

Perhaps simply computing?

Popular research topics for serverless

Use cases

Performance evaluations

Evaluating architecture

For example https://www.serverlesscomputing.org/wosc5/#papers

https://www.serverlesscomputing.org/wosc5/#papers

Q&A
See previous serverless workshops and join mailing list for future CFP:
https://www.serverlesscomputing.org/

Check our article:

Communications of the ACM,
December 2019

https://www.serverlesscomputing.org/

END

Can eventing be serverless?
Use event sources and compose them with serverless approach

Knative Eventing for eventing sources and
compositions with serverless (containers) as functions

https://knative.dev/docs/eventing/

https://knative.dev/docs/eventing/

Scaling eventing
Kubernetes-based Event
Driven Autoscaler can “drive
the scaling of any container in
Kubernetes based on the
number of events needing to
be processed”

https://keda.sh/concepts/overview/#how-keda-works

https://keda.sh/concepts/overview/#how-keda-works

DEMO
Use Kafka source in Knative eventing and use KEDA
to scale it from zero to 10 and back to zero in response
to events sent

Live and if not working recording

https://youtu.be/7Fb3NThpMmk

https://vimeo.com/376958832

Kafka Broker

Keda Scaler
Object

Event Sink
(consumer)

Kafka Source
(0-10 replicas)

https://youtu.be/7Fb3NThpMmk
https://vimeo.com/376958832

Back to (Near) Future

What is beyond FaaS in Serverless?
Can serverless “mindset” be applied to other areas?

“Serverless is a way to focus on business value.”

Can you have serverless computing paradigm in your own (private) cloud?

Rise of Containers
● Open Virtualization Format

https://www.dmtf.org/standards/ovf
● The future of Linux Containers, 2013

https://www.youtube.com/watch?v=wW9CAH9nSLs
○ At PyCon Solomon Hykes shows docker to the public for the first time.

● Open Container Initiative (OCI) https://www.opencontainers.org/
● Firecracker – Lightweight Virtualization for Serverless Computing, 2018

https://github.com/firecracker-microvm/
● Future …?

https://www.dmtf.org/standards/ovf
https://www.youtube.com/watch?v=wW9CAH9nSLs
https://www.opencontainers.org/
https://github.com/firecracker-microvm/

(Short) History of shipping containers - success story

In 1956, loose cargo cost $5.86 per ton to load. Using an ISO shipping container,
the cargo cost was reduced to only 16 cents per ton.

5.86 / 0.16 = 36x

There were many who had similar concepts previously but McLean was simply
the guy, who with the push of the US military, really made the "standardized
container" concept spread globally.

“The History Of ISO Shipping Containers From Wooden Crates To Steel Boxes”
http://www.isbu-association.org/history-of-shipping-containers.htm

http://www.isbu-association.org/history-of-shipping-containers.htm

AWS Definition of Serverless (2018-07-28)
Serverless computing allows you to build and run applications and services without thinking about
servers. Serverless applications don't require you to provision, scale, and manage any servers.
You can build them for nearly any type of application or backend service, and everything required
to run and scale your application with high availability is handled for you.

* NO SERVER MANAGEMENT - There is no need to provision or maintain any servers. There is
no software or runtime to install, maintain, or administer.

* FLEXIBLE SCALING - Your application can be scaled automatically or by adjusting its capacity
through toggling the units of consumption (e.g. throughput, memory) rather than units of individual
servers.

* AUTOMATED HIGH AVAILABILITY- Serverless applications have built-in availability and fault
tolerance. You don't need to architect for these capabilities since the services running the
application provide them by default.

https://web.archive.org/web/20180728003356/https://aws.amazon.com/serverless/

https://web.archive.org/web/20180728003356/https://aws.amazon.com/serverless/

